Explicit Numerical Approximations for SDDEs in Finite and Infinite Horizons using the Adaptive EM Method

Chenggui Yuan

Department of Mathematics Swansea University

(Joint work with Ulises Botija-Munoz)

The 17th Workshop on Markov Processes and Related Topics, Beijing Normal University 2022, 11, 25-27

 $\left\{ \bigoplus_k k \right\} \in \mathbb{R}$) and $\left\{ k \right\}$ is a subset

 Ω

I. Backgruond

II. Convergence in finite time

III. Almost sure stability

4 0 8 k. 高 \mathbf{p}

 $\mathcal{A} \xrightarrow{\sim} \mathcal{B} \xrightarrow{\sim} \mathcal{A} \xrightarrow{\sim} \mathcal{B} \xrightarrow{\sim}$

÷.

 2990

Let $(\Omega, \mathcal{F}, \{F_t\}_{t>0}, P)$ be a complete probability space with a filtration $\{F_t\}_{t>0}$ satisfying the usual conditions. Let $w(t) = (w_t^1, \dots, w_t^d)^T, t \ge 0$, be a *d*-dimensional Brownian motion defined on the probability space. Consider the *m*-dimensional

$$
dy(t) = f(y(t))dt + g(y(t))dw(t), \quad 0 \leq t \leq T,
$$
 (1)

with initial data $y(0) = y_0 \in \mathbb{R}^m$, where $f: \mathbb{R}^m \to \mathbb{R}^m$ and $g:\mathbb{R}^m\rightarrow\mathbb{R}^{m\times d}.$

イロト イ押 トイヨ トイヨ トーヨー

 200

Define the Euler-Maruyama (EM) approximate solution for the SDE [\(1\)](#page-2-0). Given a stepsize $\Delta > 0$, let $t_k = k\Delta$ for $k > 0$. Compute the discrete approximations $X_k \approx v(t_k)$ by setting $X_0 = V_0$ and forming

$$
X_{k+1} = X_k + f(X_k)\Delta + g(X_k)\Delta w_k, \qquad (2)
$$

where $\Delta w_k = w(t_{k+1}) - w(t_k)$. Let

$$
\bar{X}(t) = X_k \quad \text{for } t \in [t_k, t_{k+1}) \tag{3}
$$

K 何 ▶ K ヨ ▶ K ヨ ▶ ...

B

 QQ

and define the continuous EM approximate solution by

$$
X(t) = X_0 + \int_0^t f(\bar{X}(s))ds + \int_0^t g(\bar{X}(s))dw(s).
$$
 (4)

Note that $X(t_k) = \overline{X}(t_k) = X_k$, that is $X(t)$ and $\overline{X}(t)$ coincide with the discrete approximate solution at the gridpoints.

Under the global Lipschitz condition (GL),

$$
E\left[\sup_{0\leq t\leq T}|X(t)-y(t)|^2\right]\leq C\Delta,\qquad (5)
$$

where C is a positive constant dependent only on T, L, x_0 *but independent of* ∆*.*

> (GL) There is a constant $L > 0$ such that |*f*(*x*) − *f*(*y*)| ∨ |*g*(*x*) − *g*(*y*)| ≤ *L*|*x* − *y*| for all $x, y \in \mathbb{R}^m$.

イロト イ押 トイヨ トイヨ トーヨー

Under the global Lipschitz condition (GL),

$$
E\left[\sup_{0\leq t\leq T}|X(t)-y(t)|^2\right]\leq C\Delta,\qquad (5)
$$

where C is a positive constant dependent only on T, L, x_0 *but independent of* ∆*.*

(GL) There is a constant $L > 0$ such that

$$
|f(x) - f(y)| \vee |g(x) - g(y)| \le L|x - y|
$$
 for all $x, y \in \mathbb{R}^m$.

イロト イ押 トイヨ トイヨ トーヨー

Under the local Lipschitz condition (LL) and the linear growth condition (LG), the EM approximate solution converges to the exact solution of the SDE in the sense that

$$
\lim_{\Delta\to 0} E\left[\sup_{0\leq t\leq T}|X(t)-y(t)|^2\right]=0.
$$

K 何 ▶ K ヨ ▶ K ヨ ▶ ...

4 0 8

÷.

Assumption (H0): For each $R = 1, 2, \cdots$, there is a pair of positive constants *L* (1) $R^{(1)}$ and $L^{(2)}_R$ $n_R^{(2)}$ such that

$$
|f(x) - f(y)| \le L_R^{(1)}|x - y| \text{ and } |g(x) - g(y)| \le L_R^{(2)}|x - y|
$$

for those $x, y \in \mathbb{R}^n$ with $|x| \vee |y| \leq R$.

Theorem

Under Assumptions (H0) and the linear growth condition, if $L_R^{(1)} \leq \alpha_1 \log R, (L_R^{(2)})$ $\frac{d^{(2)}}{R}$)² \leq α_2 logR for some positive constants α_1 *and* α2*, then the order of the convergence is half, that is*

$$
E\left[\sup_{0\leq t\leq T}|X(t)-Y(t)|^2\right]=O(\Delta).
$$

K 何 ▶ K ヨ ▶ K ヨ ▶ ...

÷. $2QQ$

Counter example

Applying the EM to the SDE

$$
dy(t) = (y(t) - y3(t))dt + 2y(t)dB(t).
$$

gives

$$
X_{k+1}=X_k(1+\Delta-X_k^2\Delta+2\Delta B_k).
$$

Lemma

Given any initial value $X_0 \neq 0$ *and any* $\Delta > 0$ *,*

$$
\mathbb{P}\Big(\lim_{k\to\infty}|X_k|=\infty\Big)>0.
$$

Higham, J., Mao, X., Yuan, C., Almost sure and moment exponential stability in the numerical simulation of stochastic differential equations. SIAM J. Numer. Anal. 45 (2007), 592-609.

Wu, F., Mao, X., Szpruch, L., Almost sure exponential stability of numerical solutions for stochastic delay differential equations, Numerische Mathematik, 115 (2010), 681-697[.](#page-7-0) イロト イ団 トイヨ トイヨ トー

 299

Counter example

Applying the EM to the SDE

$$
dy(t) = (y(t) - y3(t))dt + 2y(t)dB(t).
$$

gives

$$
X_{k+1}=X_k(1+\Delta-X_k^2\Delta+2\Delta B_k).
$$

Lemma

Given any initial value $X_0 \neq 0$ *and any* $\Delta > 0$ *,*

$$
\mathbb{P}\Big(\lim_{k\to\infty}|X_k|=\infty\Big)>0.
$$

Higham, J., Mao, X., Yuan, C., Almost sure and moment exponential stability in the numerical simulation of stochastic differential equations. SIAM J. Numer. Anal. 45 (2007), 592-609.

Wu, F., Mao, X., Szpruch, L., Almost sure exponential stability of numerical solutions for stochastic delay differential equations, Numerische Mathematik, 115 (2010), 681-697[.](#page-8-0) イロト イ押 トイヨ トイヨ トー

 \equiv

 299

Counter example

Applying the EM to the SDE

$$
dy(t) = (y(t) - y3(t))dt + 2y(t)dB(t).
$$

gives

$$
X_{k+1}=X_k(1+\Delta-X_k^2\Delta+2\Delta B_k).
$$

Lemma

Given any initial value $X_0 \neq 0$ *and any* $\Delta > 0$ *,*

$$
\mathbb{P}\Big(\lim_{k\to\infty}|X_k|=\infty\Big)>0.
$$

- Higham, J., Mao, X., Yuan, C., Almost sure and moment exponential stability in the numerical simulation of stochastic differential equations. SIAM J. Numer. Anal. 45 (2007), 592-609.
- Wu, F., Mao, X., Szpruch, L., Almost sure exponential stability of numerical solutions for stochastic delay differential equations, Numerische Mathematik, 115 (2010), 681-697[.](#page-9-0) ④ 重 を ④ 重 を ……

÷. 299 Given a step size $\Delta > 0$, set $Z_0 = x_0$ and compute

$$
Z_{k+1} = Z_k + f(Z_{k+1})\Delta + g(Z_k)\Delta B_k \tag{6}
$$

for $k = 0, 1, 2, \cdots$.

The BE method is implicit as for every step given Z_k , equation [\(6\)](#page-11-0) needs to be solved for Z_{k+1} . For this purpose, some conditions need to be imposed on *f*.

The BE method is implicit as for every step given Z_k , equation [\(6\)](#page-11-0) needs to be solved for Z_{k+1} . For this purpose, some conditions need to be imposed on *f*.

イロン イ押ン イヨン イヨン 一重

There exists a constant $\alpha \in \mathbb{R}$ such that

$$
(u-v)^T(f(u)-f(v))\leq \alpha |u-v|^2, \quad \forall u,\ v\in \mathbb{R}^n.
$$

Moreover, for any $R > 0$, there exists a positive constant K_R such that

$$
|f(u)-f(v)|\leq K_R|u-v|,
$$

for any $u, v \in \mathbb{R}^n$, $|u| \vee |v| \leq R$. There exist constants $h_1 \in \mathbb{R}$ and $h_2 > 0$ such that

$$
|u-v|^2|g(u)-g(v)|^2-2|(u-v)^T(g(u)-g(v))|^2\leq h_1|u-v|^4,
$$

and

$$
|g(u,j)-g(v,j)|^2 \leq h_2|u-v|^2,
$$

for any $u, v \in \mathbb{R}^n$.

Li, X., Ma, Q., Yang, H., Yuan, C., The numerical invariant measure of stochastic differential equations with Markovian switching. SIAM J. Numer. Anal. 56 (2018), 1435-1455.

 $\left\{ \bigoplus_{i=1}^{n} \mathbb{P} \left(\mathcal{A} \right) \subseteq \mathbb{P} \left(\mathcal{A} \right) \subseteq \mathbb{P} \right\}$

Truncated EM Method

Let $\mu : \mathbb{R}_+ \to \mathbb{R}_+$ be an increasing function such that $\mu(u) \to \infty$ as $u \to \infty$ and $\sup_{|x| \leq u} (|f(x)| \vee |g(x)|) \leq \mu(u).$ Let h be a strictly decreasing function such that $\lim_{\Delta\to 0} h(\Delta) = \infty$, $\Delta^{1/4} h(\Delta) \leq \hat{h}$ (constant) and define

$$
\pi_{\Delta}(x) = (|x| \wedge \mu^{-1}(h(\Delta))\frac{x}{|x|})
$$

$$
f_{\Delta}(x) = f(\pi_{\Delta}(x)), \quad g_{\Delta}(x) = g(\pi_{\Delta}(x)).
$$

The truncated EM method:

$$
X_{\Delta}(t_{k+1})=X_{\Delta}(t_k)+f_{\Delta}(X_{\Delta}(t_k))\Delta+g_{\Delta}(X_{\Delta}(t_k))\Delta w_k.
$$

L. Hu, X. Li, X. Mao, Convergence rate and stability of the truncated Euler-Maruyama method for stochastic differential equations, J. Comp. Appl. Math., 337(2018), 274-289.

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶

÷.

Tamed EM Method

Define

$$
|f_h(x)|=\frac{f(x)}{1+h^{\alpha}|f(x)|}, |g_h(x)|=\frac{g(x)}{1+h^{\alpha}|g(x)|}, \alpha\in(0,\frac{1}{2}].
$$

The tamed EM method:

$$
X_h(t_{k+1})=X_h(t_k)+f_h(X_{\Delta}(t_k))\Delta+g_h(X_{\Delta}(t_k))\Delta w_k.
$$

• Hutzenthaler, M., Jentzen, A. and Kloeden, P.E.: Strong convergence of an explicit numerical method for SDEs with non-globally Lipschitz continuous coefficients. Ann. Appl. Probab. 22, (2012), 1611-1641.

イロメ イ押 メイヨメ イヨメ

B

Fang, W., Giles, M.B. Adaptive Euler-Maruyama method for SDEs with nonglobally Lipschitz drift. Ann. Appl. Probab. 30 (2020), no. 2, 526-560.

Consider the following SDDEs

$$
dY_t = (-2Y_t - Y_t^3 + \frac{1}{2}Y_t \sin(Y_{t-1}))dt + \sqrt{2}Y_t \cos(Y_{t-1})dW_t
$$
 (7)

with initial data $\xi \in C([-1,0];\mathbb{R}), \xi(0) = c \in \mathbb{R}/\{0\}$. Using the result of Wu, Mao and Szpruch, we can show that the exact solution of the SDDE [\(7\)](#page-15-0) is almost sure exponentially stable, i.e.

$$
\limsup_{t\to\infty}\frac{1}{t}\log|Y_t|\leq -\lambda \text{ a.s.}, \quad \lambda>0.
$$

K 何 ▶ K ヨ ▶ K ヨ ▶

However, the discrete (standard) EM approximate solution

$$
\begin{cases}\nX_k &= \xi(k\Delta) & k = -m, -m+1, ..., 0, \\
X_{k+1} &= X_k - X_k[(2 + X_k^2 - \frac{1}{2}X_k \sin(X_{k-1}))\Delta + \sqrt{2}\cos(X_{k-1})\Delta W_k],\n\end{cases}
$$
\n(8)

where $\Delta = 1/m$, $m \in \mathbb{N}$, is not almost sure exponentially stable. This means that it does not exist a constant $\eta > 0$ and a $\Delta^* \in (0,1)$ such that for all $\Delta \in (0,\Delta^*)$

$$
\limsup_{k\to\infty}\frac{1}{k\Delta}\log|X_k|\leq -\eta \text{ a.s.}.
$$

伊 ▶ イヨ ▶ イヨ ▶ ...

÷.

Consider an *m*-dimensional stochastic differential delay equation

$$
dY_t = f(Y_t, Y_{t-\tau})dt + g(Y_t, Y_{t-\tau})dW_t
$$
\n(9)

on $t > 0$, and the initial data satisfies the following condition: for any $p \geq 2$

$$
\{Y(\theta): -\tau \leq \theta \leq 0\} = \xi \in L_{\mathcal{F}_0}^p([-\tau,0];\mathbb{R}^m),
$$

that is ξ is a \mathcal{F}_0 -measurable $\mathcal{C}([-\tau,0];\mathbb{R}^m)$ -valued random variable such that $E||\xi||^p < \infty$.

K 何 ▶ K ヨ ▶ K ヨ ▶ ...

画し QQ We now define the adaptive EM method for SDDEs: For the interval $[-\tau, 0]$ we consider a fixed time step $\Delta := \tau/M$ where *M* is some positive integer. We define the discrete time approximate solution as

$$
\hat{X}_{t_n} := \xi(t_n), \quad t_n := n\Delta, \quad n = 0, -1, ..., -M. \tag{10}
$$

For $t > 0$, the time step is determined by a function $h^{\delta} : \mathbb{R}^m \to \mathbb{R}^+$ with $\delta \in (0, 1)$. Now, set

$$
h_n^{\delta} := h^{\delta}(\hat{X}_{t_n}), \quad t_{n+1} := t_n + h_n^{\delta}, \quad \hat{t}_n := \max\{t_k : t_k \le t_n - \tau, k = -M, ..., n\}
$$

and for every $\omega \in \Omega$, $N(\omega) := \inf\{n \in \mathbb{Z}^+ : t_n(\omega) \ge T\}$. Then, for
 $n = 0, 1, ...N(\omega)$, we define

$$
\hat{X}_{t_{n+1}} := \hat{X}_{t_n} + f(\hat{X}_{t_n}, \hat{X}_{\hat{t}_n})h_n^{\delta} + g(\hat{X}_{t_n}, \hat{X}_{\hat{t}_n})\Delta W_n.
$$
 (12)

イロン イ何ン イヨン イヨン 一ヨー

 QQ

Note that the adaptive time steps $\{h_{n}^{\delta}\},$ the discretization times $\{t_{n}\},$ and the number of steps *N* are all random variables.

We now define the the continuous-time approximate solution. For every $t \in [0, T]$, let

$$
\bar{X}_t := \hat{X}_{t_n} \quad \text{for} \quad t \in [t_n, t_{n+1}) \tag{13}
$$

and define

$$
X_t := \xi(t), \quad t \in [-\tau, 0];
$$

\n
$$
X_t := X_0 + \int_0^t f(\bar{X}_s, \bar{X}_{s-\tau}) ds + \int_0^t g(\bar{X}_s, \bar{X}_{s-\tau}) dW_s, \quad t > 0.
$$
\n(14)

 $\left\{ \left(\left| \mathbf{P} \right| \right) \in \mathbb{R} \right\} \times \left\{ \left| \mathbf{P} \right| \right\}$

4 0 8

重。 2990

Convergence of the approximate solution for finite time interval

Assumption (H1): The functions *f* and *g* satisfy the local Lipschitz condition: for every $R > 0$ there exists a positive constant *C^R* such that

$$
|f(x,y)-f(\bar{x},\bar{y})|+||g(x,y)-g(\bar{x},\bar{y})||\leq C_R(|x-\bar{x}|+|y-\bar{y}|) \hspace{0.1cm} (15)
$$

for all $x, y, \bar{x}, \bar{y} \in \mathbb{R}^m$ with $|x| \vee |y| \vee |\bar{x}| \vee |\bar{y}| \leq R$. Furthermore, there exist two constants $\alpha, \beta \geq 0$ such that for all $x, y \in \mathbb{R}^m$, *f* satisfies the one-sided linear growth condition:

$$
\langle x, f(x, y) \rangle \leq \alpha (|x|^2 + |y|^2) + \beta \tag{16}
$$

and *g* satisfies the linear growth condition:

$$
||g(x,y)||^2 \leq \alpha(|x|^2 + |y|^2) + \beta.
$$
 (17)

K 何 ▶ ス ヨ ▶ ス ヨ ▶ ..

Assumption (H2): The time step function $\bm{\mathsf{h}}^{\delta}:\mathbb{R}^m\rightarrow\mathbb{R}^+,\;\delta\in(0,1),$ is continuous, strictly positive and bounded by δ*T*, i.e.

$$
0 < h^{\delta}(x) \leq \delta T \quad \text{ for all } x \in \mathbb{R}^m. \tag{18}
$$

Furthermore, there exist constants α , $\beta > 0$ such that for all $x, y \in \mathbb{R}^m$.

$$
\langle x, f(x,y) \rangle + \frac{1}{2} h^{\delta}(x) |f(x,y)|^2 \leq \alpha (|x|^2 + |y|^2) + \beta. \tag{19}
$$

K 何 ▶ K ヨ ▶ K ヨ ▶

÷. QQ

Definition

We say that the time horizon T is attainable if {*tn*} *reaches T in a finite number of steps N, i.e. for almost all* ω ∈ Ω, *there exists a* $N(\omega)$ *such that t_{N(ω)}* = $\sum_{n=0}^{N(\omega)}h^{\delta}(X_{t_n}) \geq T$.

If the SDE [\(9\)](#page-17-0) *satisfies Assumption (H1) and the function h*^δ *satisfies Assumption (H2), then T is attainable and for all* $p > 0$ *there exists a constant C* > 0 *dependent on T and p*, *but independent of h* $_{n}^{\delta}$ *, such that*

$$
\mathbb{E}\left[\sup_{0\leq t\leq T}|X_t|^p\right]\leq C.\tag{20}
$$

イロメ イ押 メイヨメ イヨメ

G

つへへ

Definition

We say that the time horizon T is attainable if {*tn*} *reaches T in a finite number of steps N, i.e. for almost all* ω ∈ Ω, *there exists a* $N(\omega)$ *such that t_{N(ω)}* = $\sum_{n=0}^{N(\omega)}h^{\delta}(X_{t_n}) \geq T$.

Theorem

If the SDE [\(9\)](#page-17-0) *satisfies Assumption (H1) and the function h*^δ *satisfies Assumption (H2), then T is attainable and for all* $p > 0$ *there exists a constant C* > 0 *dependent on T and p*, *but independent of h* $^{\delta}_{n}$, such that

$$
\mathbb{E}\left[\sup_{0\leq t\leq T}|X_t|^p\right]\leq C.\tag{20}
$$

≮ロ ▶ ⊀ 御 ▶ ⊀ ヨ ▶ ⊀ ヨ ▶

B

Strong convergence of the approximate solution to the exact solution

Theorem

If the SDDE [9](#page-17-0) satisfies Assumption (H1) and the time step function h^{δ} *satisfies Assumption (H2), then for all p > 0*

$$
\lim_{\delta\to 0}\mathbb{E}\left[\sup_{0\leq t\leq T}|X_t-Y_t|^p\right]=0.
$$

Chenggui Yuan [Adaptive EM Method of SDEs](#page-0-0)

ă. QQ

Order of convergence

Assumption (H3):There exists a constant *L* > 0 such that for all $x, y, \bar{x}, \bar{y} \in \mathbb{R}^m$, *f* satisfies the one-sided Lipschitz condition

$$
2\langle x-\bar{x},f(x,y)-f(\bar{x},\bar{y})\rangle\leq L(|x-\bar{x}|^2+|y-\bar{y}|^2) \qquad (21)
$$

and *g* satisfies the (global) Lipschitz condition

$$
||g(x,y)-g(\bar{x},\bar{y})||^2 \leq L(|x-\bar{x}|^2+|y-\bar{y}|^2). \qquad (22)
$$

In addition *f* satisfies the polynomial growth Lipschitz condition: there exist constants $\gamma, \lambda, q > 0$ such that for all $x, y, \bar{x}, \bar{y} \in \mathbb{R}^m$

$$
|f(x,y)-f(\bar{x},\bar{y})|\leq (\gamma(|x|^q+|y|^q+|\bar{x}|^q+|\bar{y}|^q)+\lambda)(|x-\bar{x}|+|y-\bar{y}|). \tag{23}
$$

Furthermore, for any $s, t \in [-\tau, 0]$ and $q > 0$, there exists a positive constant Λ such that

$$
\mathbb{E}||\xi(t)-\xi(s)||\leq \Lambda|t-s|^q.\tag{24}
$$

④個 トメ ヨ ト メ ヨ ト ニ ヨー

 2990

If the SDE [\(9\)](#page-17-0) *satisfies Assumption (H3) and the time-step function h satisfies Assumption H2, then for all* $p > 0$ *, there exists a positive constant C independent of* δ *such that*

$$
\mathbb{E}\left[\sup_{0\leq t\leq T}|X_t-Y_t|^p\right]\leq C\delta^{p/2}.
$$

Chenggui Yuan [Adaptive EM Method of SDEs](#page-0-0)

÷.

 $2Q$

K 何 ▶ K ヨ ▶ K ヨ ▶ ...

4 0 8

Convergence of the approximate solution for infinite time interval

Assumption (H4): The functions *f* and *g* satisfy the local Lipschitz condition: for every $R > 0$ there exists a positive constant *C^R* such that

$$
|f(x,y)-f(\bar{x},\bar{y})|+||g(x,y)-g(\bar{x},\bar{y})||\leq C_R(|x-\bar{x}|+|y-\bar{y}|)
$$
 (25)

for all $x, y, \bar{x}, \bar{y} \in \mathbb{R}^m$ with $|x|, |y|, |\bar{x}|, |\bar{y}| \leq R$. Furthermore, there exists constants $\alpha_1 > \alpha_2 > 0$ and $\beta > 0$, such that for all $x, y \in \mathbb{R}^m$, *f* satisfies the dissipative one-sided linear growth condition:

$$
\langle x, f(x,y) \rangle \le -\alpha_1 |x|^2 + \alpha_2 |y|^2 + \beta, \tag{26}
$$

and *g* is globally bounded:

$$
||g(x,y)||^2 \leq \beta. \tag{27}
$$

 $\left\{ \bigoplus_{i=1}^{n} \mathbb{P} \left(\mathcal{A} \right) \subseteq \mathbb{P} \left(\mathcal{A} \right) \subseteq \mathbb{P} \right\}$

Assumption (H5): For every δ , the time step function $h^\delta: \mathbb{R}^m \rightarrow \mathbb{R}^+,$ is continuous and uniformly bounded by $h_{\textit{max}}^\delta,$ where $h_{\textit{max}}^{\delta} \in (0, \infty)$. Furthermore, there exist constants $\alpha_1 > \alpha_2 > 0$ and $\beta > 0$, such that for all $x, y \in \mathbb{R}^m$.

$$
\langle x, f(x,y) \rangle + \frac{1}{2} h^{\delta}(x) |f(x,y)|^2 \leq -\alpha_1 |x|^2 + \alpha_2 |y|^2 + \beta. \tag{28}
$$

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶

 \Rightarrow

Lemma

If the SDDE [\(9\)](#page-17-0) *satisfies Assumption (H4), then there exists a positive constant C such that for all t* ≥ 0

$$
\mathbb{E}\left[|Y_t|^p\right] \leq C. \tag{29}
$$

If the SDE [\(9\)](#page-17-0) *satisfies Assumption (H4) and the function h*^δ *satisfies Assumption (H5), then for all p* > 0 *there exists a constant C dependent on* h_{max} *,* β *,* α_1 *,* α_2 *and p, but independent of* δ *and t, such that for all t* > 0 ,

$$
\mathbb{E}\left[|X_t|^p\right] \leq C. \tag{30}
$$

K 何 ▶ K ヨ ▶ K ヨ ▶

つひへ

Lemma

If the SDDE [\(9\)](#page-17-0) *satisfies Assumption (H4), then there exists a positive constant C such that for all t* ≥ 0

$$
\mathbb{E}\left[|Y_t|^p\right] \leq C. \tag{29}
$$

Theorem

If the SDE [\(9\)](#page-17-0) *satisfies Assumption (H4) and the function h*^δ *satisfies Assumption (H5), then for all p* > 0 *there exists a constant C dependent on* h_{max} *,* β *,* α_1 *,* α_2 *and p, but independent of* δ *and t, such that for all t* > 0 ,

$$
\mathbb{E}\left[|X_t|^p\right]\leq C.\tag{30}
$$

 $\langle \oplus \rangle$ > $\langle \oplus \rangle$ > $\langle \oplus \rangle$

B

Almost sure exponential stability for SDDEs

Assumption H6: The functions *f* and *g* satisfy the local Lipschitz condition: for every $R > 0$ there exists a positive constant *C^R* such that

 $|f(x, y) - f(\bar{x}, \bar{y})| + ||g(x, y) - g(\bar{x}, \bar{y})|| < C_R(|x - \bar{x}| + |y - \bar{y}|)$ (31)

for all $x, y, \bar{x}, \bar{y} \in \mathbb{R}^m$ with $|x|, |y|, |\bar{x}|, |\bar{y}| \leq R$. Furthermore, there exist constants α_1, α_2 and β satisfying

$$
\alpha_1 > 2\alpha_2 \ge 0 \text{ and } \beta > 0,
$$
 (32)

KO KARA KE KAEK E YA GA

such that for all $x, y \in \mathbb{R}^m$, *f* satisfies

$$
\langle x, f(x,y) \rangle + \frac{1}{2} ||g(x,y)||^2 \leq -\alpha_1 |x|^2 + \alpha_2 |y|^2. \tag{33}
$$

Assumption H7: For every δ , the time step function $\mathit{h}^{\delta}:\mathbb{R}\rightarrow\mathbb{R}^{+},$ is continuous and there exist constants $\alpha_1 > \alpha_2 \geq 0$ and $\beta > 0$, such that for all $x, y \in \mathbb{R}^m$.

$$
\langle x, f(x, y) \rangle + \frac{1}{2} h^{\delta}(x) |f(x, y)|^2 + \frac{1}{2} ||g(x, y)||^2 \le -\alpha_1 |x|^2 + \alpha_2 |y|^2.
$$
\n(34)
Furthermore, h^{δ} is uniformly bounded by the real number h_{max}^{δ} ,

where $h_{\textit{max}}^{\delta} \in (0,\infty)$ is small enough such that

$$
2\alpha_2 e^{\alpha_1 h_{\text{max}}} < \alpha_1. \tag{35}
$$

御き メミメ メミメー

B

Theorem (Exponential Stability)

Consider the SDDE [\(9\)](#page-17-0) *with a one-dimensional Brownian motion. If f and g satisfy Assumption (H6) and h^δ satisfies Assumption (H7), then the adaptive approximate solution is almost sure exponentially stable, i.e. there exists a* λ > 0 *such that*

$$
\limsup_{n\to\infty}\frac{\log|\hat{X}_{t_n}|}{t_n}\leq -\lambda \text{ a.s.}
$$

B

ALCOHOL:

Proof of Theorem

By the definition of the adaptive EM method, we have

$$
\begin{aligned} |\hat{X}_{t_{n+1}}|^2 &\leq |\hat{X}_{t_n}|^2+2h_n(\langle \hat{X}_{t_n}, f(\hat{X}_{t_n}, \hat{X}_{\hat{t}_n})\rangle+\frac{1}{2}h_n|f(\hat{X}_{t_n}, \hat{X}_{\hat{t}_n})|^2+\frac{1}{2}|g(\hat{X}_{t_n}, \hat{X}_{\hat{t}_n})|^2)\\ &+2\langle \hat{X}_{t_n}+f(\hat{X}_{t_n}, \hat{X}_{\hat{t}_n})h_n, g(\hat{X}_{t_n}, \hat{X}_{\hat{t}_n})\Delta W_n\rangle+|g(\hat{X}_{t_n}, \hat{X}_{\hat{t}_n})|^2(|\Delta W_n|^2-h_n) \end{aligned}
$$

Using (H7), we obtain

$$
\begin{aligned} |\hat{X}_{t_{n+1}}|^2 &\leq |\hat{X}_{t_n}|^2-2\alpha_1 h_n |\hat{X}_{t_n}|^2+2\alpha_2 h_n |\hat{X}_{\hat{t}_n}|^2+2\langle \hat{X}_{t_n}+f(\hat{X}_{t_n},\hat{X}_{\hat{t}_n})h_n,g(\hat{X}_{t_n},\hat{X}_{\hat{t}_n})\Delta W_n\rangle \\ &+|g(\hat{X}_{t_n},\hat{X}_{\hat{t}_n})|^2(|\Delta W_n|^2-h_n).\end{aligned}
$$

This implies

$$
e^{\lambda t_{n+1}}|\hat{X}_{t_{n+1}}|^2 \leq e^{\lambda t_n}|\hat{X}_{t_n}|^2 + 2\alpha_2 e^{\lambda t_{n+1}}|\hat{X}_{\hat{t}_n}|^2h_n + e^{\lambda t_{n+1}}|g(\hat{X}_{t_n}, \hat{X}_{\hat{t}_n})|^2(|\Delta W_n|^2 - h_n) \\ + 2e^{\lambda t_{n+1}}\langle \hat{X}_{t_n} + f(\hat{X}_{t_n}, \hat{X}_{\hat{t}_n})h_n, g(\hat{X}_{t_n}, \hat{X}_{\hat{t}_n})\Delta W_n \rangle.
$$

メロメメ 御きメ 老き メ 悪き し

高山 2990

This means

$$
\begin{aligned} e^{\lambda t_n}|\hat{X}_{t_n}|^2 &\leq |X_0|^2 + C + \bar{C} \sum_{k=0}^{n-1} e^{\lambda t_k} |g(\hat{X}_{t_k}, \hat{X}_{\hat{t}_k})|^2 (|\Delta W_k|^2 - h_k) \\ &+ \hat{C} \sum_{k=0}^{n-1} e^{\lambda t_k} \langle \hat{X}_{t_k} + f(\hat{X}_{t_k}, \hat{X}_{\hat{t}_k}) h_k, g(\hat{X}_{t_k}, \hat{X}_{\hat{t}_k}) \Delta W_k \rangle \\ &\leq C + \bar{C} \{ M_n + N_n \}, \end{aligned}
$$

where:

\n- \n
$$
M_n := \sum_{k=0}^{n-1} e^{\lambda t_k} |g(\hat{X}_{t_k}, \hat{X}_{t_k})|^2 (|\Delta W_k|^2 - h_k);
$$
\n
\n- \n
$$
N_n := \sum_{k=0}^{n-1} e^{\lambda t_k} \langle \hat{X}_{t_k} + f(\hat{X}_{t_k}, \hat{X}_{t_k}) h_k, g(\hat{X}_{t_k}, \hat{X}_{t_k}) \Delta W_k \rangle.
$$
\n
\n

K ロ > K 個 > K ミ > K ミ > 三 ミ → の Q Q →

This means

$$
\begin{aligned} e^{\lambda t_n}|\hat{X}_{t_n}|^2 &\leq |X_0|^2 + C + \bar{C} \sum_{k=0}^{n-1} e^{\lambda t_k} |g(\hat{X}_{t_k}, \hat{X}_{\hat{t}_k})|^2 (|\Delta W_k|^2 - h_k) \\ &+ \hat{C} \sum_{k=0}^{n-1} e^{\lambda t_k} \langle \hat{X}_{t_k} + f(\hat{X}_{t_k}, \hat{X}_{\hat{t}_k}) h_k, g(\hat{X}_{t_k}, \hat{X}_{\hat{t}_k}) \Delta W_k \rangle \\ &\leq C + \bar{C} \{ M_n + N_n \}, \end{aligned}
$$

where:

\n- \n
$$
M_n := \sum_{k=0}^{n-1} e^{\lambda t_k} |g(\hat{X}_{t_k}, \hat{X}_{\hat{t}_k})|^2 (|\Delta W_k|^2 - h_k);
$$
\n
\n- \n
$$
N_n := \sum_{k=0}^{n-1} e^{\lambda t_k} \langle \hat{X}_{t_k} + f(\hat{X}_{t_k}, \hat{X}_{\hat{t}_k}) h_k, g(\hat{X}_{t_k}, \hat{X}_{\hat{t}_k}) \Delta W_k \rangle.
$$
\n
\n

K ロ ▶ K 御 ▶ K 聖 ▶ K 聖 ▶ │ 聖 │ 約 9 0 º

We can show that $M + N$ is a local martingale with respect to $\{\mathcal{F}_{t_n}\}\right.$ Thus by the discrete semimartingale convergence theorem one can see that

$$
\lim_{n\to\infty}(M_n+N_n)<\infty \text{ a.s.}
$$

Therefore,

$$
\limsup_{n\to\infty}\frac{1}{t_n}\log(e^{\lambda t_n}|\hat{X}_{t_n}|^2)\leq 0
$$
 a.s.

This is

$$
\limsup_{n\to\infty}\frac{\log|\hat{X}_{t_n}|}{t_n}\leq -\frac{\lambda}{2} \text{ a.s.}
$$

The proof is therefore complete.

医电子 化重子

ă. QQ

Simulations

In Figure [1,](#page-38-0) we graphed the logarithm of EM solution.

Figure: Simulations of the logarithm of the EM solution for $\Delta = 2 \times 10^{-3}$

 \leftarrow

× Ξ **DO** ÷.

4 重っ

 2990

Figure: Simulations of adaptive-EM solution

Chenggui Yuan [Adaptive EM Method of SDEs](#page-0-0)

イロト 不優 トイモト 不思 トー

 $E = \Omega Q$