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Background

Let (Ω,F , {Ft}t≥0,P) be a complete probability space with a
filtration {Ft}t≥0 satisfying the usual conditions. Let
w(t) = (w1

t , · · · ,wd
t )T , t ≥ 0, be a d-dimensional Brownian

motion defined on the probability space.
Consider the m-dimensional

dy(t) = f (y(t))dt + g(y(t))dw(t), 0 ≤ t ≤ T , (1)

with initial data y(0) = y0 ∈ Rm, where f : Rm → Rm and
g : Rm → Rm×d .
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Define the Euler-Maruyama (EM) approximate solution for the
SDE (1). Given a stepsize ∆ > 0, let tk = k∆ for k ≥ 0.
Compute the discrete approximations Xk ≈ y(tk ) by setting
X0 = y0 and forming

Xk+1 = Xk + f (Xk )∆ + g(Xk )∆wk , (2)

where ∆wk = w(tk+1)− w(tk ). Let

X̄ (t) = Xk for t ∈ [tk , tk+1) (3)

and define the continuous EM approximate solution by

X (t) = X0 +

∫ t

0
f (X̄ (s))ds +

∫ t

0
g(X̄ (s))dw(s). (4)

Note that X (tk ) = X̄ (tk ) = Xk , that is X (t) and X̄ (t) coincide
with the discrete approximate solution at the gridpoints.
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Theorem

Under the global Lipschitz condition (GL),

E

[
sup

0≤t≤T
|X (t)− y(t)|2

]
≤ C∆, (5)

where C is a positive constant dependent only on T ,L, x0 but
independent of ∆.

(GL) There is a constant L > 0 such that

|f (x)− f (y)| ∨ |g(x)− g(y)| ≤ L|x − y |

for all x , y ∈ Rm.
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Theorem
Under the local Lipschitz condition (LL) and the linear growth
condition (LG), the EM approximate solution converges to the
exact solution of the SDE in the sense that

lim
∆→0

E

[
sup

0≤t≤T
|X (t)− y(t)|2

]
= 0.
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Assumption (H0): For each R = 1,2, · · · , there is a pair of
positive constants L(1)

R and L(2)
R such that

|f (x)− f (y)| ≤ L(1)
R |x − y | and |g(x)− g(y)| ≤ L(2)

R |x − y |

for those x , y ∈ Rn with |x | ∨ |y | ≤ R.

Theorem
Under Assumptions (H0) and the linear growth condition, if
L(1)

R ≤ α1logR, (L(2)
R )2 ≤ α2logR for some positive constants α1

and α2, then the order of the convergence is half, that is

E

[
sup

0≤t≤T
|X (t)− Y (t)|2

]
= O(∆).
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Counter example

Applying the EM to the SDE

dy(t) = (y(t)− y3(t))dt + 2y(t)dB(t).

gives
Xk+1 = Xk (1 + ∆− X 2

k ∆ + 2∆Bk ).

Lemma
Given any initial value X0 6= 0 and any ∆ > 0,

P
(

lim
k→∞

|Xk | =∞
)
> 0.

Higham, J., Mao, X., Yuan, C., Almost sure and moment exponential
stability in the numerical simulation of stochastic differential equations.
SIAM J. Numer. Anal. 45 (2007), 592-609.

Wu, F., Mao, X., Szpruch, L., Almost sure exponential stability of
numerical solutions for stochastic delay differential equations,
Numerische Mathematik, 115 (2010), 681-697.
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Backward Euler (BE) Method

Given a step size ∆ > 0, set Z0 = x0 and compute

Zk+1 = Zk + f (Zk+1)∆ + g(Zk )∆Bk (6)

for k = 0,1,2, · · · .

The BE method is implicit as for every step given Zk , equation
(6) needs to be solved for Zk+1. For this purpose, some
conditions need to be imposed on f .
The BE method is implicit as for every step given Zk , equation
(6) needs to be solved for Zk+1. For this purpose, some
conditions need to be imposed on f .
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There exists a constant α ∈ R such that

(u − v)T (f (u)− f (v)) ≤ α|u − v |2, ∀u, v ∈ Rn.

Moreover, for any R ≥ 0, there exists a positive constant KR
such that

|f (u)− f (v)| ≤ KR|u − v |,

for any u, v ∈ Rn, |u| ∨ |v | ≤ R.
There exist constants h1 ∈ R and h2 > 0 such that

|u − v |2|g(u)− g(v)|2 − 2|(u − v)T (g(u)− g(v))|2 ≤ h1|u − v |4,

and
|g(u, j)− g(v , j)|2 ≤ h2|u − v |2,

for any u, v ∈ Rn.
Li, X., Ma, Q., Yang, H., Yuan, C., The numerical invariant measure of
stochastic differential equations with Markovian switching. SIAM J.
Numer. Anal. 56 (2018), 1435-1455.
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Truncated EM Method

Let µ : R+ → R+ be an increasing function such that µ(u)→∞
as u →∞ and sup|x |≤u(|f (x)| ∨ |g(x)|) ≤ µ(u). Let h be a
strictly decreasing function such that
lim∆→0 h(∆) =∞,∆1/4h(∆) ≤ ĥ(constant) and define

π∆(x) = (|x | ∧ µ−1(h(∆))
x
|x |

f∆(x) = f (π∆(x)), g∆(x) = g(π∆(x)).

The truncated EM method:

X∆(tk+1) = X∆(tk ) + f∆(X∆(tk ))∆ + g∆(X∆(tk ))∆wk .

L. Hu, X. Li, X. Mao, Convergence rate and stability of the truncated
Euler-Maruyama method for stochastic differential equations, J. Comp.
Appl. Math., 337(2018), 274-289.

Chenggui Yuan Adaptive EM Method of SDEs



strathlogo

Tamed EM Method

Define

|fh(x)| =
f (x)

1 + hα|f (x)|
, |gh(x)| =

g(x)

1 + hα|g(x)|
, α ∈ (0,

1
2

].

The tamed EM method:

Xh(tk+1) = Xh(tk ) + fh(X∆(tk ))∆ + gh(X∆(tk ))∆wk .

Hutzenthaler, M., Jentzen, A. and Kloeden, P.E.: Strong convergence of
an explicit numerical method for SDEs with non-globally Lipschitz
continuous coefficients. Ann. Appl. Probab. 22, (2012), 1611-1641.
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Adaptive EM Method

Fang, W., Giles, M.B. Adaptive Euler-Maruyama method
for SDEs with nonglobally Lipschitz drift. Ann. Appl.
Probab. 30 (2020), no. 2, 526-560.

Consider the following SDDEs

dYt = (−2Yt −Y 3
t +

1
2

Yt sin(Yt−1))dt +
√

2Yt cos(Yt−1)dWt (7)

with initial data ξ ∈ C([−1,0];R), ξ(0) = c ∈ R/{0}. Using the
result of Wu, Mao and Szpruch, we can show that the exact
solution of the SDDE (7) is almost sure exponentially stable, i.e.

lim sup
t→∞

1
t

log |Yt | ≤ −λ a.s., λ > 0.
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However, the discrete (standard) EM approximate solution{
Xk = ξ(k∆) k = −m,−m + 1, ...,0,
Xk+1 = Xk − Xk [(2 + X 2

k −
1
2Xk sin(Xk−1))∆ +

√
2 cos(Xk−1)∆Wk ], k = 0,1, . . .

(8)
where ∆ = 1/m,m ∈ N, is not almost sure exponentially stable.
This means that it does not exist a constant η > 0 and a
∆∗ ∈ (0,1) such that for all ∆ ∈ (0,∆∗)

lim sup
k→∞

1
k∆

log |Xk | ≤ −η a.s. .
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Consider an m-dimensional stochastic differential delay
equation

dYt = f (Yt ,Yt−τ )dt + g(Yt ,Yt−τ )dWt (9)

on t ≥ 0, and the initial data satisfies the following condition: for
any p ≥ 2

{Y (θ) : −τ ≤ θ ≤ 0} = ξ ∈ Lp
F0

([−τ,0];Rm),

that is ξ is a F0-measurable C([−τ,0];Rm)-valued random
variable such that E ||ξ||p <∞.
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We now define the adaptive EM method for SDDEs:
For the interval [−τ,0] we consider a fixed time step ∆ := τ/M
where M is some positive integer. We define the discrete time
approximate solution as

X̂tn := ξ(tn), tn := n∆, n = 0,−1, ...,−M. (10)

For t > 0, the time step is determined by a function hδ : Rm → R+

with δ ∈ (0,1). Now, set

hδ
n := hδ(X̂tn ), tn+1 := tn+hδ

n, t̂n := max{tk : tk ≤ tn−τ, k = −M, ...,n}
(11)

and for every ω ∈ Ω, N(ω) := inf{n ∈ Z+ : tn(ω) ≥ T}. Then, for
n = 0,1, ...N(ω), we define

X̂tn+1 := X̂tn + f (X̂tn , X̂t̂n )hδ
n + g(X̂tn , X̂t̂n )∆Wn. (12)

Note that the adaptive time steps {hδ
n}, the discretization times {tn},

and the number of steps N are all random variables.
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We now define the the continuous-time approximate solution.
For every t ∈ [0,T ], let

X̄t := X̂tn for t ∈ [tn, tn+1) (13)

and define

Xt := ξ(t), t ∈ [−τ,0];

Xt := X0 +

∫ t

0
f (X̄s, X̄s−τ )ds +

∫ t

0
g(X̄s, X̄s−τ )dWs, t > 0.

(14)
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Convergence of the approximate solution for finite time
interval

Assumption (H1): The functions f and g satisfy the local
Lipschitz condition: for every R > 0 there exists a positive
constant CR such that

|f (x , y)−f (x̄ , ȳ)|+||g(x , y)−g(x̄ , ȳ)|| ≤ CR(|x−x̄ |+|y−ȳ |) (15)

for all x , y , x̄ , ȳ ∈ Rm with |x | ∨ |y | ∨ |x̄ | ∨ |ȳ | ≤ R. Furthermore,
there exist two constants α, β ≥ 0 such that for all x , y ∈ Rm, f
satisfies the one-sided linear growth condition:

〈x , f (x , y)〉 ≤ α(|x |2 + |y |2) + β (16)

and g satisfies the linear growth condition:

||g(x , y)||2 ≤ α(|x |2 + |y |2) + β. (17)
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Assumption (H2): The time step function
hδ : Rm → R+, δ ∈ (0,1), is continuous, strictly positive and
bounded by δT , i.e.

0 < hδ(x) ≤ δT for all x ∈ Rm. (18)

Furthermore, there exist constants α, β > 0 such that for all
x , y ∈ Rm.

〈x , f (x , y)〉+
1
2

hδ(x)|f (x , y)|2 ≤ α(|x |2 + |y |2) + β. (19)
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Definition
We say that the time horizon T is attainable if {tn} reaches T in
a finite number of steps N, i.e. for almost all ω ∈ Ω, there exists
a N(ω) such that tN(ω) =

∑N(ω)
n=0 hδ(Xtn ) ≥ T .

Theorem

If the SDE (9) satisfies Assumption (H1) and the function hδ

satisfies Assumption (H2), then T is attainable and for all p > 0
there exists a constant C > 0 dependent on T and p, but
independent of hδn, such that

E

[
sup

0≤t≤T
|Xt |p

]
≤ C. (20)
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Strong convergence of the approximate solution to the
exact solution

Theorem
If the SDDE 9 satisfies Assumption (H1) and the time step
function hδ satisfies Assumption (H2), then for all p > 0

lim
δ→0

E

[
sup

0≤t≤T
|Xt − Yt |p

]
= 0.
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Order of convergence

Assumption (H3):There exists a constant L > 0 such that for
all x , y , x̄ , ȳ ∈ Rm, f satisfies the one-sided Lipschitz condition

2〈x − x̄ , f (x , y)− f (x̄ , ȳ)〉 ≤ L(|x − x̄ |2 + |y − ȳ |2) (21)

and g satisfies the (global) Lipschitz condition

||g(x , y)− g(x̄ , ȳ)||2 ≤ L(|x − x̄ |2 + |y − ȳ |2). (22)

In addition f satisfies the polynomial growth Lipschitz condition:
there exist constants γ, λ, q > 0 such that for all x , y , x̄ , ȳ ∈ Rm

|f (x , y)−f (x̄ , ȳ)| ≤ (γ(|x |q+|y |q+|x̄ |q+|ȳ |q)+λ)(|x−x̄ |+|y−ȳ |).
(23)

Furthermore, for any s, t ∈ [−τ,0] and q > 0, there exists a
positive constant Λ such that

E||ξ(t)− ξ(s)|| ≤ Λ|t − s|q. (24)
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Theorem
If the SDE (9) satisfies Assumption (H3) and the time-step
function h satisfies Assumption H2, then for all p > 0, there
exists a positive constant C independent of δ such that

E

[
sup

0≤t≤T
|Xt − Yt |p

]
≤ Cδp/2.
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Convergence of the approximate solution for infinite
time interval

Assumption (H4): The functions f and g satisfy the local
Lipschitz condition: for every R > 0 there exists a positive
constant CR such that

|f (x , y)−f (x̄ , ȳ)|+||g(x , y)−g(x̄ , ȳ)|| ≤ CR(|x−x̄ |+|y−ȳ |) (25)

for all x , y , x̄ , ȳ ∈ Rm with |x |, |y |, |x̄ |, |ȳ | ≤ R. Furthermore,
there exists constants α1 > α2 ≥ 0 and β > 0, such that for all
x , y ∈ Rm, f satisfies the dissipative one-sided linear growth
condition:

〈x , f (x , y)〉 ≤ −α1|x |2 + α2|y |2 + β, (26)

and g is globally bounded:

||g(x , y)||2 ≤ β. (27)

Chenggui Yuan Adaptive EM Method of SDEs



strathlogo

Assumption (H5): For every δ, the time step function
hδ : Rm → R+, is continuous and uniformly bounded by hδmax ,
where hδmax ∈ (0,∞).
Furthermore, there exist constants α1 > α2 ≥ 0 and β > 0,
such that for all x , y ∈ Rm.

〈x , f (x , y)〉+
1
2

hδ(x)|f (x , y)|2 ≤ −α1|x |2 + α2|y |2 + β. (28)
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Lemma
If the SDDE (9) satisfies Assumption (H4), then there exists a
positive constant C such that for all t ≥ 0

E [|Yt |p] ≤ C. (29)

Theorem

If the SDE (9) satisfies Assumption (H4) and the function hδ

satisfies Assumption (H5), then for all p > 0 there exists a
constant C dependent on hmax , β, α1, α2 and p, but
independent of δ and t , such that for all t ≥ 0,

E [|Xt |p] ≤ C. (30)
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Almost sure exponential stability for SDDEs

Assumption H6: The functions f and g satisfy the local
Lipschitz condition: for every R > 0 there exists a positive
constant CR such that

|f (x , y)−f (x̄ , ȳ)|+||g(x , y)−g(x̄ , ȳ)|| ≤ CR(|x−x̄ |+|y−ȳ |) (31)

for all x , y , x̄ , ȳ ∈ Rm with |x |, |y |, |x̄ |, |ȳ | ≤ R. Furthermore,
there exist constants α1, α2 and β satisfying

α1 > 2α2 ≥ 0 and β > 0, (32)

such that for all x , y ∈ Rm, f satisfies

〈x , f (x , y)〉+
1
2
||g(x , y)||2 ≤ −α1|x |2 + α2|y |2. (33)
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Assumption H7: For every δ, the time step function
hδ : R→ R+, is continuous and there exist constants
α1 > α2 ≥ 0 and β > 0, such that for all x , y ∈ Rm.

〈x , f (x , y)〉+ 1
2

hδ(x)|f (x , y)|2 +
1
2
||g(x , y)||2 ≤ −α1|x |2 +α2|y |2.

(34)
Furthermore, hδ is uniformly bounded by the real number hδmax ,
where hδmax ∈ (0,∞) is small enough such that

2α2eα1hmax < α1. (35)
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Theorem (Exponential Stability)
Consider the SDDE (9) with a one-dimensional Brownian
motion. If f and g satisfy Assumption (H6) and hδ satisfies
Assumption (H7), then the adaptive approximate solution is
almost sure exponentially stable, i.e. there exists a λ > 0 such
that

lim sup
n→∞

log |X̂tn |
tn

≤ −λ a.s.
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Proof of Theorem

By the definition of the adaptive EM method, we have

|X̂tn+1 |
2 ≤ |X̂tn |

2 + 2hn(〈X̂tn , f (X̂tn , X̂t̂n )〉+
1
2

hn|f (X̂tn , X̂t̂n )|2 +
1
2
|g(X̂tn , X̂t̂n )|2)

+ 2〈X̂tn + f (X̂tn , X̂t̂n )hn, g(X̂tn , X̂t̂n )∆Wn〉+ |g(X̂tn , X̂t̂n )|2(|∆Wn|2 − hn)

Using (H7), we obtain

|X̂tn+1 |
2 ≤ |X̂tn |

2 − 2α1hn|X̂tn |
2 + 2α2hn|X̂t̂n |

2 + 2〈X̂tn + f (X̂tn , X̂t̂n )hn, g(X̂tn , X̂t̂n )∆Wn〉

+ |g(X̂tn , X̂t̂n )|2(|∆Wn|2 − hn).

This implies

eλtn+1 |X̂tn+1 |
2 ≤ eλtn |X̂tn |

2 + 2α2eλtn+1 |X̂t̂n |
2hn + eλtn+1 |g(X̂tn , X̂t̂n )|2(|∆Wn|2 − hn)

+ 2eλtn+1〈X̂tn + f (X̂tn , X̂t̂n )hn, g(X̂tn , X̂t̂n )∆Wn〉.
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This means

eλtn |X̂tn |
2 ≤ |X0|2 + C + C̄

n−1∑
k=0

eλtk |g(X̂tk , X̂t̂k
)|2(|∆Wk |2 − hk )

+ Ĉ
n−1∑
k=0

eλtk 〈X̂tk + f (X̂tk , X̂t̂k
)hk , g(X̂tk , X̂t̂k

)∆Wk 〉

≤ C + C̄{Mn + Nn},

where:

Mn :=
∑n−1

k=0 eλtk |g(X̂tk , X̂t̂k
)|2(|∆Wk |2 − hk );

Nn :=
∑n−1

k=0 eλtk 〈X̂tk + f (X̂tk , X̂t̂k
)hk , g(X̂tk , X̂t̂k

)∆Wk 〉.
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We can show that M + N is a local martingale with respect to
{Ftn}. Thus by the discrete semimartingale convergence
theorem one can see that

lim
n→∞

(Mn + Nn) <∞ a.s.

Therefore,

lim sup
n→∞

1
tn

log(eλtn |X̂tn |2) ≤ 0 a.s.

This is

lim sup
n→∞

log |X̂tn |
tn

≤ −λ
2

a.s.

The proof is therefore complete.
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Simulations

In Figure 1, we graphed the logarithm of EM solution.

Figure: Simulations of the logarithm of the EM solution for
∆ = 2× 10−3
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Figure: Simulations of adaptive-EM solution
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